![]()
管腔型乳腺癌是最常見的乳腺癌亞型,大約占全部病例的三分之二,晚期一線標(biāo)準(zhǔn)治療方案為內(nèi)分泌治療聯(lián)合CDK4/6抑制劑,中位無進(jìn)展生存大約2~2.5年。不過,目前尚無針對CDK4/6抑制劑耐藥的明確標(biāo)準(zhǔn)治療方案。后續(xù)治療方案包括內(nèi)分泌治療±針對特定基因突變(包括PI3K-AKT-mTOR通路靶點(diǎn)、BRCA突變或ESR1突變)靶向治療或再用CDK4/6抑制劑,中位無進(jìn)展生存都不超過6個(gè)月。隨著疾病進(jìn)展,對內(nèi)分泌治療敏感性降低,治療策略只能逐漸轉(zhuǎn)向以化療為主的治療方式。抗體綴合藥物徹底改變管腔型乳腺癌的治療格局,DESTINY-Breast04研究證實(shí)德曲妥珠單抗將HR陽性HER2低表達(dá)乳腺癌化療失敗患者中位無進(jìn)展生存延長至10.1個(gè)月,DESTINY-Breast06研究證實(shí)德曲妥珠單抗可改善HER2低表達(dá)和超低表達(dá)乳腺癌經(jīng)過充分內(nèi)分泌治療但是尚未化療患者中位無進(jìn)展生存。雖然德曲妥珠單抗和戈沙妥珠單抗等抗體綴合藥物有效,但是仍然離不開細(xì)胞毒性化療藥物。根據(jù)管腔型乳腺癌分子特征進(jìn)行精準(zhǔn)治療,尤其找出生物學(xué)預(yù)測標(biāo)志物仍然至關(guān)重要,值得進(jìn)一步研究。
諸多研究努力闡明管腔型乳腺癌的分子圖譜。50基因表達(dá)亞型及其風(fēng)險(xiǎn)模型是乳腺癌分子分型的里程碑,但是根據(jù)mRNA分型不能充分反映組織異質(zhì)性和細(xì)胞多樣性。國際乳腺癌分子分型聯(lián)盟METABRIC數(shù)據(jù)庫僅包括1977至2005年診斷患者,可能無法充分反映當(dāng)代臨床治療標(biāo)準(zhǔn)。同樣,由于缺乏多組學(xué)數(shù)據(jù),美國紐約紀(jì)念醫(yī)院斯隆凱特林癌癥中心MSKCC數(shù)據(jù)庫對全面探索基因組事件的價(jià)值有限。雖然臨床蛋白質(zhì)組腫瘤分析聯(lián)盟CPTAC已彌補(bǔ)多組學(xué)數(shù)據(jù)不足,但是樣本量有限,尤其管腔型乳腺癌復(fù)發(fā)患者,限制其全面探索腫瘤異質(zhì)性的能力。這些分子模型無法準(zhǔn)確地分析腫瘤或發(fā)現(xiàn)個(gè)體生物學(xué)特征及其治療靶點(diǎn)。
為了應(yīng)對這些挑戰(zhàn),復(fù)旦大學(xué)附屬腫瘤醫(yī)院此前對管腔型乳腺癌患者樣本進(jìn)行大規(guī)模并行測序,并結(jié)合代謝組學(xué)和蛋白質(zhì)組學(xué)分析,利用大規(guī)模多組學(xué)數(shù)據(jù)相似性網(wǎng)絡(luò)融合(SNF)確定管腔型乳腺癌SNF復(fù)旦分型:經(jīng)典管腔型SNF1、免疫原型SNF2、增殖型SNF3、RTK驅(qū)動(dòng)型SNF4。這些SNF分型通過癌癥基因組圖譜TCGA、METABRIC和CPTAC等獨(dú)立數(shù)據(jù)集得到進(jìn)一步驗(yàn)證,表明SNF分型具有可靠性和普適性。不過,多組學(xué)測序的成本和復(fù)雜性可能限制其臨床應(yīng)用。為了克服該難題,復(fù)旦大學(xué)附屬腫瘤醫(yī)院開發(fā)數(shù)字病理分類方法,利用病理全切片圖像人工智能卷積神經(jīng)網(wǎng)絡(luò)對分子分型進(jìn)行分類,并捕獲和整合重要的形態(tài)學(xué)特征,例如腫瘤浸潤淋巴細(xì)胞、癌相關(guān)成纖維細(xì)胞等,交叉驗(yàn)證曲線下面積達(dá)0.87(SNF1)、0.81(SNF2)和0.78(SNF3和SNF4),表明根據(jù)數(shù)字病理人工智能深度學(xué)習(xí)進(jìn)行分型區(qū)分具有可行性。這些數(shù)據(jù)回顧分析工作為管腔型乳腺癌分型和個(gè)體化治療奠定基礎(chǔ),但是根據(jù)SNF分型系統(tǒng)進(jìn)行人工智能輔助精準(zhǔn)治療對管腔型乳腺癌的療效仍需進(jìn)一步臨床前瞻驗(yàn)證。
2025年12月4日,美國《細(xì)胞》旗下《癌細(xì)胞》在線發(fā)表復(fù)旦大學(xué)附屬腫瘤醫(yī)院范蕾①??、張文娟①、龔悅①、金希、趙珅、于寶華、吉芃、劉西禹、陳力、賀敏、劉引、隋辛怡、馬林曉曦、朱秀之、楊帆、葛麗萍、吳松陽、吳炅、余科達(dá)、柳光宇、胡欣、楊文濤、王中華??、江一舟??、邵志敏??、北京腫瘤醫(yī)院李惠平①和王楠、重慶大學(xué)附屬腫瘤醫(yī)院曾曉華①和張寧寧、中國醫(yī)科大學(xué)附屬第一醫(yī)院滕月娥①和石晶、遼寧省腫瘤醫(yī)院孫濤、南昌市人民醫(yī)院陳文艷和汪云、中山大學(xué)腫瘤防治中心王樹森、西安交通大學(xué)第一附屬醫(yī)院楊謹(jǐn)、上海市第一婦嬰保健院莊志剛、南通大學(xué)附屬醫(yī)院倪蘇婕和何志賢、蘇北人民醫(yī)院符德元、福建省腫瘤醫(yī)院宋傳貴、吉林大學(xué)第一醫(yī)院呂錚、恒瑞醫(yī)藥梁倩男和沈煜、復(fù)旦大學(xué)附屬中山醫(yī)院梁斐等學(xué)者的LINUX(BCTOP-L-M05)研究報(bào)告,首次對管腔型晚期乳腺癌CDK4/6抑制劑耐藥患者人工智能輔助SNF復(fù)旦分型精準(zhǔn)治療進(jìn)行前瞻驗(yàn)證。
LINUX (BCTOP-L-M05): SNF Platform Study of HR+/HER2-advanced Breast Cancer (NCT05594095)
Official Title: Precision Platform Study of HR+/HER2-advanced Breast Cancer Based on SNF Typing (A Prospective, Open-label, Multi-center, Phase II Platform Study)
![]()
該多中心探索性貝葉斯優(yōu)化隨機(jī)對照二期平臺(tái)研究于2022年12月30日至2024年5月23日從全國6個(gè)中心入組管腔型晚期乳腺癌CDK4/6抑制劑耐藥患者105例,通過人工智能輔助數(shù)字病理分類進(jìn)行SNF復(fù)旦分型,再按2比1隨機(jī)分入精準(zhǔn)治療組或單藥化療組。
精準(zhǔn)治療組70例:
SNF1:依維莫司+內(nèi)分泌治療
SNF2:卡瑞利珠單抗+法米替尼+單藥化療
SNF3:氟唑帕利+單藥化療
SNF4:阿帕替尼+單藥化療
單藥化療組35例:
卡培他濱、白蛋白紫杉醇、長春瑞濱、艾立布林四選一
![]()
結(jié)果,精準(zhǔn)治療組與單藥化療組相比,客觀緩解率顯著較高:
SNF1:10%比0%
SNF2:65%比30%
SNF3:40%比30%
SNF4:70%比20%
![]()
兩組患者3~4級治療相關(guān)不良事件發(fā)生率相似,均為37%。
因此,該小樣本二期臨床研究結(jié)果表明,對于管腔型晚期乳腺癌CDK4/6抑制劑耐藥患者,人工智能輔助SNF復(fù)旦分型精準(zhǔn)治療與單藥化療相比,臨床獲益顯著,尤其對于SNF2和SNF4亞型而言,值得開展大樣本三期臨床研究進(jìn)一步驗(yàn)證。
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
Cancer Cell. 2025 Dec 4. IF: 44.5
Precision treatment with artificial intelligence assisted subtyping enhances therapeutic efficacy in HR+/HER2- breast cancer: The LINUXtrial.
Lei Fan, Wen-Juan Zhang, Hui-Ping Li, Xiao-Hua Zeng, Yue-E Teng, Yue Gong, Xi Jin, Shen Zhao, Tao Sun, Wen-Yan Chen, Shu-Sen Wang, Jin Yang, Zhi-Gang Zhuang, Su-Jie Ni, Zhi-Xian He, De-Yuan Fu, Chuan-Gui Song, Zheng Lv, Qian-Nan Liang, Bao-Hua Yu, Jing Shi, Nan Wang, Xin-Rui Liang, Ning-Ning Zhang, Yun Wang, Peng Ji, Xi-Yu Liu, Li Chen, Min He, Yin Liu, Xin-Yi Sui, Lin-Xiaoxi Ma, Xiu-Zhi Zhu, Fan Yang, Li-Ping Ge, Song-Yang Wu, Jiong Wu, Ke-Da Yu, Guang-Yu Liu, Xin Hu, Yu Shen, Zheng Pang, Jian-Fei Wang, Fei Liang, Wen-Tao Yang, Zhong-Hua Wang, Yi-Zhou Jiang, Zhi-Ming Shao; BCTOP investigators.
Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Medical College, Fudan University, Shanghai, China; Peking University Cancer Hospital and Institute, Beijing, China; Chongqing University Cancer Hospital, Chongqing, China; The First Hospital of China Medical University, Shenyang, China; Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China; Nanchang People's Hospital, Nanchang, China; Sun Yat-sen University Cancer Center, Guangzhou, China; The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China; The Affiliated Hospital of Nantong University, Nantong, China; Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China; Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China; The First Hospital of Jilin University, Changchun, China; Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China; Zhongshan Hospital, Fudan University, Shanghai, China.
HIGHLIGHTS
LINUX platform trial explores AI-assisted subtyping-based precision strategies
Subtyping-based precision therapies demonstrate efficacy in HR+/HER2- breast cancer
Subtyping-based precision treatments achieve primary endpoint in SNF2/4 subtypes
Precision treatments show a manageable safety profile
We report the results of LINUX (NCT05594095), a multicenter, randomized, controlled phase II platform trial aiming to identify effective precision treatments for hormone receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer after resistance to cyclin-dependent kinase 4/6 inhibitor. A total of 105 patients were categorized into four similarity network fusion (SNF) subtypes by artificial intelligence-assisted classification and randomly assigned to receive subtyping-based precision therapy (N = 70) or treatment of physician's choice (N = 35). Results demonstrate superior primary endpoint of objective response rates in the subtyping-based groups compared to controls: 10% versus 0% for SNF1, 65% versus 30% for SNF2, 40% versus 30% for SNF3, and 70% versus 20% for SNF4. Grade 3-4 treatment-related adverse events occurred in 37% of both groups. These findings highlight the clinical benefits of subtyping-based precision therapies, particularly for SNF2 and SNF4 subtypes, warranting further validation in phase III trials.
KEYWORDS: HR+/HER2-, breast cancer, precision treatment, AI-assisted, subtyping-based therapy
DOI: 10.1016/j.ccell.2025.11.003
來源:SIBCS
免責(zé)聲明:本公眾號旨在為醫(yī)療衛(wèi)生專業(yè)人士提供腫瘤領(lǐng)域資訊參考,促進(jìn)專業(yè)交流。內(nèi)容僅供信息交流,不可替代專業(yè)醫(yī)療指導(dǎo),亦非診療建議。 據(jù)此操作,風(fēng)險(xiǎn)自擔(dān)。轉(zhuǎn)載內(nèi)容均已標(biāo)注來源及作者。如有版權(quán)問題,請留言聯(lián)系,我們將及時(shí)處理。
特別聲明:以上內(nèi)容(如有圖片或視頻亦包括在內(nèi))為自媒體平臺(tái)“網(wǎng)易號”用戶上傳并發(fā)布,本平臺(tái)僅提供信息存儲(chǔ)服務(wù)。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.