<cite id="ffb66"></cite><cite id="ffb66"><track id="ffb66"></track></cite>
      <legend id="ffb66"><li id="ffb66"></li></legend>
      色婷婷久,激情色播,久久久无码专区,亚洲中文字幕av,国产成人A片,av无码免费,精品久久国产,99视频精品3
      網易首頁 > 網易號 > 正文 申請入駐

      考研數學·終極沖刺:高頻核心考點、題型與解題思路全解析(附PDF文檔下載)

      0
      分享至

      在考研即將來臨之際,小編對考研數學的三大科目:高等數學、線性代數和概率論與數理統計,基于考研真題的規律,對它們的重要考點、題型與解題思路進行了一下匯總,希望幫助大家快速鎖定核心,穩定考心,高效沖刺。也希望對于馬上參加高等數學、微積分、工科數學分析、線性代數、概率論與數理統計期末考試的學友能夠高效復習,取得理想成績,過上一個快樂、輕松的寒假!

      注意:如果發現不會,可以直接查閱教材及其中的例題,當然也可以查閱自己手頭的有對應知識點的和典型題的參考資料!以下內容沒有標明的則表示適用于數學一、二、三。大學數學的解題策略與核心方法可以查閱推文:。

      高等數學 一、極限與連續

      • 高頻考點與題型

        • 計算類:求函數極限(未定式,如 、 、 、 等),數列極限(特別是 項和或積、遞推數列)。

        • 概念與性質類:判斷函數連續性與間斷點類型;利用函數連續性和極限性質(如保號性)討論方程根的存在性;證明極限存在(數列極限常見)。

      • 求解思路與方法要點

      1. 計算三步法定型化簡(有理化、提公因式、等價無窮小代換)→選法(洛必達法則、夾逼準則、泰勒公式,涉及到導數條件的導數定義法)。

      2. 型極限:冪指函數結構,首選公式,幾乎為固定解法。

      3. 數列極限:一般 極限的計算轉換為函數極限討論,遞推數列考慮單調有界準則,關鍵證明“單調性”或“有界性”。

      4. 泰勒公式:是處理含 等復雜函數極限的利器,務必熟記 處的展開到 項的帶佩亞諾余項的麥克勞林公式。

      二、一元函數微分學
      • 高頻考點與題型

        • 計算類:求各類函數(顯函數、隱函數、參數方程、分段函數、高階)的導數與微分(注意微分不能漏掉 ),曲率與曲率圓(數學一、二)。

        • 應用類:導數幾何意義(切線與法線方程);利用導數研究函數性態(單調、極值、凹凸、拐點、漸近線);微分中值定理(羅爾、拉格朗日、柯西、泰勒中值定理)的證明題;不等式證明;方程根的存在性與個數討論。

      • 求解思路與方法要點

      1. 導數定義:分段函數在分段點求導,抽象函數可導性的證明,沒有可導條件需要使用導數的問題和復雜函數表達式一點處導數的計算與可導性的判定,已知一點處可導求極限問題,一般考慮使用導數的定義。

      2. 復合函數求導及高階導數:特別注意復合函數求導 和抽象函數的高階導數的計算 及高階導數的萊布尼茲公式,同時記住幾個基本初等函數 , , , , 的高階導數計算公式。

      3. 中值命題證明核心是構造輔助函數。常用方法:①觀察法(逆推原函數法);②常數 值法(令中值函數值為常數 );③微分方程法(通過轉換為函數的導數式后通過解微分方程得到原函數)。特別注意構建輔助函數時 , , 乘積因子的應用.不含導數中值等式首先考慮零值定理,包含導數首先考慮羅爾中值定理,包含函數值的差考慮拉格朗日中值定理或柯西中值定理,包含2階及以上導數考慮泰勒中值定理,包含兩個中值同時考慮拉格朗日和柯西中值定理。

      4. 不等式證明:函數、常值不等式常用單調性法,也即最值法最常用(將所有項移到一側,使得一側為0構建輔助函數,然后通過單調性,凹凸性,求最值的方法驗證不等式成立,注意開區間端點值取極限);一階導數的中值不等式常用拉格朗日中值定理;二階及以上中值不等式常用泰勒中值定理。

      5. 漸近線:特別注意先求定義域,再分類求解三類漸近線。注意鉛直漸近線可能的位置包括區間的端點和分段函數的分界點都要考慮,只要這些點一側極限為無窮大,即存在鉛直漸近線。

      三、一元函數積分學
      • 高頻考點與題型

        • 計算類:計算不定積分、定積分、廣義積分(反常積分)。

        • 應用類:變限積分函數的求導、極限、連續性討論;定積分的幾何應用(求面積、旋轉體體積、平面曲線弧長);物理應用(變力做功、壓力、引力等)。

        • 證明類:積分等式與不等式的證明。

      • 求解思路與方法要點

        關鍵:準確畫圖,確定積分限。

        • 面積

        • 旋轉體體積: (繞 軸), (繞 軸)

        • 弧長—— ,

      1. 積分計算先化簡,再觀察。順序:①定積分對稱區間定積分注意奇偶性(整體不能用時對積分線性拆分),被積函數的周期性;② 第二類換元法(特定結構直接換元:三角代換、根式代換、倒代換);③ 第一類換元法(拆分被積函數為兩個函數的乘積,湊微分);④ 分部積分法(“反對冪指三”及其變形式乘積,左為 右為 ,被積函數有整數 ,分部積分構建遞推式)。(注意不定積分結果不能漏掉 )

      2. 變限積分:遇到變限積分問題,要么等式兩端求導數,要么分子、分母求導數,目的是消去積分項。牢記公式

      3. 等式不等式的證明:積分中值等式、不等式的證明通??紤]積分中值定理、構建變限積分輔助函數,使用微分中值定理來證明;積分等式與不等式的證明與判定通常構造變限積分函數,借助于積分的保號性,保序性,估值定理和絕對值不等式性質來證明與判定。

      4. 幾何應用

      四、多元函數微分學
      • 高頻考點與題型

        • 計算類:求偏導數、全微分;求多元復合函數(含抽象函數)、隱函數的一階與二階偏導;方向導數與梯度的計算。

        • 概念性質類:二元函數的連續性、偏導數的存在性、可微性、方向導數的存在性的判定與關系

        • 應用類:方向導數與梯度的應用,求多元函數的極值與最值(無條件極值、條件極值拉格朗日乘數法);幾何應用(曲面的切平面與法線,空間曲線的切線與法平面)。

      • 求解思路與方法要點

      1. 鏈式法則:復合函數求導的核心。建議用“樹狀圖”理清變量關系,防止遺漏。

      2. 隱函數求導:公式法或直接方程兩邊對某變量求導,注意復合關系。

      3. 無條件極值① 找駐點(令一階偏導為0);② 用 判別: 且 為極小, 且 為極大, 不是極值。

      4. 條件極值:拉格朗日函數 ,解方程組。注意區分最值極值,最值還需比較邊界。

      五、多元函數積分學
      • 高頻考點與典型題型

        • 二重積分:計算(直角坐標、極坐標);積分次序交換;與微分方程、中值定理的綜合題。

        • 三重積分/曲線曲面積分(數一):計算(直角、球面坐標);格林公式、高斯公式(這兩個公式尤為重點)、斯托克斯公式的應用;積分與路徑無關的條件;各類積分的物理意義(如通量、環流量)。

      • 求解思路與方法要點

      1. 注意性質預處理:二重積分、三重積分、對弧長的曲線積分、對面積的曲面積分,考察偶倍奇零的計算性質與積分區域的輪換性;曲線積分與曲面積分都可以考慮被積表達式定義在積分曲線上,積分曲面上,可以用描述曲線、曲面的方程等式簡化、轉換積分表達式。

      2. “積得出來”優先:選擇坐標系或積分次序的首要標準是被積函數易積。二重積分區域含圓、扇形用極坐標;被積函數含 形式優先考慮極坐標。三重積分首先考慮先一后二投影法,根據積分區域特點選擇先二后一截面法,區域由球面、錐面圍成考慮球面坐標計算法。

      3. 公式使用條件:對坐標的曲線積分首選格林公式—— 閉曲線正向, 、 在區域內有一階連續偏導;對坐標曲面積分首選高斯公式—— 閉曲面外側;斯托克斯公式—— 右手法則確定方向。必須檢查!

      4. 補線/補面技巧:當曲線/曲面不封閉時,用直線/平面補全,再用公式,最后減去補的部分

      六、無窮級數
      • 高頻考點與題型

        • 數項級數(數一、三):判別正項級數斂散性(比較、比值、根值);判別任意項級數絕對收斂與條件收斂;常值級數求和。

        • 冪級數(數一、三):求收斂半徑與收斂域;求和函數 ;將函數展開為冪級數。

        • 傅里葉級數(數一):將函數展開為傅里葉級數,討論其和函數和某些點處和函數值的計算。

      • 求解思路與方法要點

      1. 斂散性判別先看是否絕對收斂(對 用正項級數法)。常用結論: 在 時收斂,在 時發散。

      2. 冪級數求和核心技巧線性運算、逐項求導逐項積分,將原級數化為等比級數 或其他幾個基本初等函數( , , , , )的級數的形式,求和后再反過來操作。

      3. 收斂域端點必須單獨討論。

      4. 傅里葉展開:牢記系數公式和狄利克雷收斂定理,注意奇偶延拓和周期。

      七、常微分方程
      • 高頻考點與題型

        • 計算類:求解一階方程(可分離、齊次、線性、伯努利);求解高階常系數線性微分方程(齊次與非齊次)。

        • 應用類:建立并求解幾何或物理問題(數一、二)及經濟問題(數三)的微分方程模型;與其它知識(如極限、積分、中值定理)的綜合題。

      • 求解思路與方法要點

      1. 識別類型:拿到方程,第一步永遠是判斷類型,選擇對應解法。

      2. 一階線性:公式 必須記牢。

      3. 高階常系數:齊次通解(由特征根決定);非齊次特解(由 形式設特解,如 設 )。

      4. 應用題關鍵是列出方程。尋找“變化率等于...”的語句,或利用幾何關系(如斜率)、物理定律(如牛頓第二定律)。

      5. 注意線性微分方程的解的結構性質的應用。

      線性代數 一、矩陣與行列式
      • 高頻考點與題型

        • 行列式:數值型行列式計算;抽象型行列式計算(與矩陣、特征值結合);行列式應用(克拉默法則)。

        • 矩陣:矩陣運算(乘法、冪、轉置);逆矩陣與伴隨矩陣的計算與性質;矩陣方程求解;初等矩陣與矩陣的秩。

      • 求解思路與方法要點

      1. 行列式計算:先用性質化簡(初等變換、提公因子、化為上/下三角),再利用三角形行列式結論,范德蒙德、爪型、遞推法等特殊行列式結論。

      2. 矩陣運算律:矩陣乘法沒有交換律, , 要分清。

      3. 求逆矩陣:① 伴隨矩陣法 ;② 初等行變換法 。后者更通用。

      4. 矩陣秩常用不等式, ;結論:若 可逆,則 。

      二、向量與線性方程組
      • 高頻考點與題型

        • 向量組:判斷向量組的線性相關性;求向量組的極大無關組與秩;向量空間(數一)的基與維數。

        • 方程組:求解齊次/非齊次線性方程組;討論方程組解的存在性與唯一性(含參數);理解解的結構(基礎解系、通解)。

      • 求解思路與方法要點

      1. 相關性判定:轉化為齊次方程組是否有非零解的問題,或直接看向量組秩是否小于向量個數。

      2. 求解方程組高斯消元法(初等行變換)是根本。得到行最簡形后,分清主元與自由未知量。

      3. 解的結構非齊次通解 = 對應齊次通解 + 非齊次特解。齊次通解中基礎解系向量個數 = 。

      4. 公共解/同解問題:轉化為聯立方程組,或利用基礎解系間的關系。

      三、特征值與二次型
      • 高頻考點與題型

        • 特征值:求數字型/抽象型矩陣的特征值與特征向量;相似矩陣的性質與判定;矩陣相似對角化(何時可對角化,如何對角化)。

        • 二次型:化二次型為標準形或規范形(配方法、正交變換法);正定二次型與正定矩陣的判定;矩陣合同。正負慣性指數的判定。

      • 求解思路與方法要點

      1. 求特征值:解特征方程 。抽象矩陣常用定義 和性質(如特征值之和為跡,之積為行列式)。

      2. 相似對角化:① 階矩陣有 個線性無關的特征向量(核心),注意施密特正交化方法;② 不同特征值對應的特征向量必線性無關。

      3. 正交變換法化二次型步驟固定:① 寫矩陣 ;② 求 的特征值;③ 求正交化的特征向量;④ 得正交矩陣 ,標準形為 。這是數一大題常考點。

      4. 正定判定:① 定義;② 順序主子式全 ;③ 特征值全 。

      概率論與數理統計(數學一、三) 一、隨機變量及其分布
      • 高頻考點與題型

        • 一維隨機變量:利用分布律/密度函數求概率、分布函數;求隨機變量函數的分布。

        • 二維隨機變量:求聯合、邊緣、條件分布;判斷獨立性;求二維隨機變量函數的分布( , , 等)。

        • 常見分布:0-1分布、二項分布、泊松分布、均勻分布、指數分布、正態分布的性質與應用。

      • 求解思路與方法要點

      1. 分布函數法:求隨機變量函數分布的核心方法,尤其 ,然后對概率密度積分區域作圖分析。

      2. 公式法:已知 的聯合密度 ,求 密度。

      3. 獨立性:聯合分布 = 邊緣分布的乘積(離散時為聯合律,連續時為密度函數)。

      4. 正態分布:標準化 ;線性組合仍服從正態分布。

      二、數字特征與極限定理
      • 高頻考點與題型

        • 計算類:求數學期望(均值)、方差、協方差、相關系數。

        • 理論類:利用數字特征的性質進行計算或證明;切比雪夫不等式;大數定律與中心極限定理的理解與應用。

      • 求解思路與方法要點

      1. 期望/方差計算:① 利用定義(積分或求和);② 利用性質(如 , , );③ 利用常見分布的已知結論。

      2. 協方差/相關系數:公式 。相關系數為0表示線性不相關,但不一定獨立(獨立一定不相關)。

      3. 中心極限定理:處理獨立同分布隨機變量和的近似計算問題(“當 很大時, 近似服從正態分布”)。應用題常涉及此。

      三、數理統計
      • 高頻考點與題型

        • 統計量分布:三大抽樣分布( 、 、 )的定義與性質;求統計量的分布或數字特征。

        • 參數估計:矩估計法與最大似然估計法;點估計的評價標準(無偏性、有效性);區間估計(單個正態總體的均值和方差)。

        • 假設檢驗(數一):單個正態總體參數的假設檢驗。

      • 求解思路與方法要點

      1. 三大分布結構:必須清楚 , , 是如何由標準正態樣本構造的。例如, 。

      2. 矩估計:核心是用樣本矩替換總體矩,解方程。

      3. 最大似然估計:步驟固定:① 寫似然函數 ;② 取對數 ;③ 對 求導,令導數為0;④ 解出 的估計值。注意:似然函數可能是乘積或分段形式。

      4. 無偏性:驗證 。常用結論:樣本均值 是總體均值 的無偏估計。

      點擊本文左下角閱讀原文,或者加入考研競賽數學交流圈,或通過以下鏈接可以下載以上內容PDF文檔:

      https://pan.quark.cn/s/72740e0bd1c7

      祝備考順利,金榜題名!

      往期推薦閱讀

      1、

      2、

      3、

      4、

      5、

      微信公眾號:考研競賽數學(ID: xwmath)大學數學公共基礎課程分享交流平臺!支持咱號請點贊分享!


      特別聲明:以上內容(如有圖片或視頻亦包括在內)為自媒體平臺“網易號”用戶上傳并發布,本平臺僅提供信息存儲服務。

      Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

      相關推薦
      熱點推薦
      中方一炮,逼日本自爆丑聞,核機密落在中國,兩個月秘不敢宣

      中方一炮,逼日本自爆丑聞,核機密落在中國,兩個月秘不敢宣

      田園小歸
      2026-01-13 08:47:50
      600億抄底!美財長的學生竟然收購了中國萬達,難怪王健林會輸!

      600億抄底!美財長的學生竟然收購了中國萬達,難怪王健林會輸!

      蜉蝣說
      2026-01-11 17:51:23
      內塔尼亞胡喊話伊朗:以方已做好萬全準備 力挺伊朗人民追求自由

      內塔尼亞胡喊話伊朗:以方已做好萬全準備 力挺伊朗人民追求自由

      老馬拉車莫少裝
      2026-01-12 19:11:46
      新型啃老正在流行,67歲大媽哭訴:兒子的陪伴式孝順讓我苦不堪言

      新型啃老正在流行,67歲大媽哭訴:兒子的陪伴式孝順讓我苦不堪言

      烙任情感
      2026-01-12 15:21:36
      有雪無雪,就看廿六,今日十一月二十六,今冬雪多嗎?看農諺咋說

      有雪無雪,就看廿六,今日十一月二十六,今冬雪多嗎?看農諺咋說

      阿龍美食記
      2026-01-14 03:00:04
      洗碗機事件最新:洗碗機退了女子已回家,砸家男主罕見出鏡發聲

      洗碗機事件最新:洗碗機退了女子已回家,砸家男主罕見出鏡發聲

      鋭娛之樂
      2026-01-13 20:10:05
      笑麻了!青海評標專家集體低血糖跑路!餓到叫120,事后直接開除

      笑麻了!青海評標專家集體低血糖跑路!餓到叫120,事后直接開除

      朗威談星座
      2026-01-14 00:56:56
      余華:人到中年崩潰的真相,不是貧窮,而是你從未為自己活過

      余華:人到中年崩潰的真相,不是貧窮,而是你從未為自己活過

      杏花煙雨江南的碧園
      2025-12-02 14:15:02
      曝《最終幻想7重制版》第三部將整合眾多衍生作品!

      曝《最終幻想7重制版》第三部將整合眾多衍生作品!

      3DM游戲
      2026-01-12 10:00:05
      “兩岸統一”突破點不在馬英九,也不在國民黨,可能在這個人身上

      “兩岸統一”突破點不在馬英九,也不在國民黨,可能在這個人身上

      趣文說娛
      2026-01-12 17:36:51
      “天才少女”姜萍后續?全家消失了,她沒返校,疑似在服裝廠打工

      “天才少女”姜萍后續?全家消失了,她沒返校,疑似在服裝廠打工

      何氽簡史
      2025-11-25 18:02:57
      我們為什么不能全民皆兵?上世紀干過,僅首鋼就拉出13個團四萬人

      我們為什么不能全民皆兵?上世紀干過,僅首鋼就拉出13個團四萬人

      云霄紀史觀
      2026-01-12 14:53:01
      蔣家第四代蔣友柏,“完美貴公子”形象崩塌,自言:性格分裂嚴重,曾在紐約街頭頹廢,回臺后一個月僅領4000元

      蔣家第四代蔣友柏,“完美貴公子”形象崩塌,自言:性格分裂嚴重,曾在紐約街頭頹廢,回臺后一個月僅領4000元

      清風鑒史
      2026-01-08 21:00:13
      黎巴嫩真主黨就伊朗局勢發表聲明 支持伊朗政府

      黎巴嫩真主黨就伊朗局勢發表聲明 支持伊朗政府

      財聯社
      2026-01-14 02:10:13
      79歲李保田近況曝光!定居山東盡顯老態,兒子李彧長得像父親翻版

      79歲李保田近況曝光!定居山東盡顯老態,兒子李彧長得像父親翻版

      小徐講八卦
      2026-01-13 18:44:43
      中方警告:中菲已近戰爭邊緣,無論多少幫手我們都奉陪到底

      中方警告:中菲已近戰爭邊緣,無論多少幫手我們都奉陪到底

      觀察者小海風
      2026-01-13 19:40:38
      大部分人的存款,都會歸于零

      大部分人的存款,都會歸于零

      詩詞中國
      2025-12-21 21:19:44
      中原突圍,皮旅三團長:一人成上將、一人戰上甘嶺、一人主政軍區

      中原突圍,皮旅三團長:一人成上將、一人戰上甘嶺、一人主政軍區

      青途歷史
      2026-01-12 16:58:09
      發現一個奇怪現象:喜歡把家里打掃得很干凈的人,往往會有這3種命運,并非迷信

      發現一個奇怪現象:喜歡把家里打掃得很干凈的人,往往會有這3種命運,并非迷信

      LULU生活家
      2025-12-23 18:33:20
      研究發現:每天早上睡懶覺的老人,用不了多久,身體或有4大好處

      研究發現:每天早上睡懶覺的老人,用不了多久,身體或有4大好處

      岐黃傳人孫大夫
      2026-01-02 16:00:03
      2026-01-14 03:55:00
      自主校內外
      自主校內外
      校內外自主,塑造不一樣的自己
      1622文章數 1729關注度
      往期回顧 全部

      教育要聞

      用AI邪修式帶娃,這把屬于是青銅誤入王者局了

      頭條要聞

      特朗普:已取消所有與伊朗官員的會談

      頭條要聞

      特朗普:已取消所有與伊朗官員的會談

      體育要聞

      他帶出國乒世界冠軍,退休后為愛徒返場

      娛樂要聞

      蔡卓妍承認新戀情,與男友林俊賢感情穩定

      財經要聞

      "天量存款"將到期 資金會否搬入股市?

      科技要聞

      每年10億美元!谷歌大模型注入Siri

      汽車要聞

      限時9.99萬元起 2026款啟辰大V DD-i虎鯨上市

      態度原創

      本地
      時尚
      房產
      公開課
      軍事航空

      本地新聞

      云游內蒙|到巴彥淖爾去,赴一場塞上江南的邀約

      今年春天,外套長一點會更美!

      房產要聞

      又一新校開建!??谶@一片區,迎來教育重磅升級!

      公開課

      李玫瑾:為什么性格比能力更重要?

      軍事要聞

      美媒:美對伊朗行動選項"遠超傳統空襲"

      無障礙瀏覽 進入關懷版 主站蜘蛛池模板: 久久久久国产精品人妻aⅴ天堂| 城步| 人妻在线中文| 91精品乱码一区二区三区| 少妇被黑人到高潮喷出白浆| 午夜成人亚洲理伦片在线观看| 若羌县| 中文字幕色偷偷人妻久久| 制服中文字幕在线| 人妻色综合| 蜜桃av无码免费看永久| 人妻丰满熟妇无码区免费| 国产成人久久av免费看| 五月丁香在线视频| 大胸少妇午夜三级| 国产女厕撒尿一区二区| 一本色道无码DVD道色| 无码人妻一区二区三区线| 国产成人精品日本亚洲77上位| 欧美内射深喉中文字幕| 久久精品成人无码观看免费| 国产探花在线精品一区二区| 都安| 国产偷国产偷亚洲清高网站| 亭亭五月丁香| 中国老熟妇自拍hd发布| ..真实国产乱子伦对白在线_!| 日韩吃奶摸下aa片免费观看 | 亚洲国产制服丝袜 | 久久青草免费91观看| 午夜一区二区三区视频| 国产一区二区黄色在线观看| 国产偷国产偷亚洲高清午夜| 天堂av在线成人免费| 妇女bbbb插插插视频| 亚洲综合激情另类小说区| 欧美日韩免费做爰大片人| 孟州市| 精品人妻伦九区久久aaa片69| 亚洲成人黄色网| 天天躁夜夜踩很很踩2022|