![]()
技術(shù)的發(fā)展,總會(huì)帶來(lái)語(yǔ)言的發(fā)展。各個(gè)行業(yè),都會(huì)面臨同一個(gè)古老而普遍的問(wèn)題——我們應(yīng)該如何用統(tǒng)一的語(yǔ)言去描述技術(shù)?
歷史上,無(wú)論是蒸汽機(jī)、電磁學(xué)、計(jì)算機(jī),還是今日的人工智能,每一次技術(shù)突破,都會(huì)倒逼我們創(chuàng)造詞匯、定義詞匯,最終統(tǒng)一詞匯。在醫(yī)療技術(shù)領(lǐng)域,這一問(wèn)題尤為突出。每一個(gè)名詞,都是醫(yī)生在臨床上去做判斷的依據(jù),直接作用于人體、作用于生命。
因此,“語(yǔ)言的準(zhǔn)確”不是學(xué)術(shù)的潔癖,而是倫理和安全的底線。醫(yī)生、工程師、監(jiān)管者必須在同一套語(yǔ)言下進(jìn)行溝通,創(chuàng)新才能真正落地。
思宇MedTech 編輯團(tuán)隊(duì)在近期發(fā)表的文獻(xiàn)中注意到一個(gè)典型案例:國(guó)際機(jī)械循環(huán)輔助學(xué)會(huì)(ISMCS)的官方會(huì)刊—— Artificial Organs刊登了一篇標(biāo)題為 “Expression of Concern” 的致編輯信。作者從工程與臨床的雙重視角出發(fā),呼吁全球范圍內(nèi)統(tǒng)一血泵軸承技術(shù)的術(shù)語(yǔ)與定義,并舉例說(shuō)明當(dāng)前行業(yè)內(nèi)部分設(shè)備在“全磁懸浮”表述上的不一致。
心室輔助裝置(Ventricular Assist Device, VAD,常被稱之為“人工心臟”)是一種植入體內(nèi)、持續(xù)推動(dòng)血液流動(dòng)的“血泵”。而血泵的核心部件是高速旋轉(zhuǎn)的轉(zhuǎn)子,它依靠不同類型的軸承來(lái)懸浮和穩(wěn)定——因此,軸承技術(shù)是人工心臟設(shè)計(jì)中最關(guān)鍵的環(huán)節(jié)之一。
文中提到,一款已進(jìn)入臨床應(yīng)用的新型血泵,其業(yè)界專家的技術(shù)歸類與企業(yè)代表在國(guó)際學(xué)術(shù)會(huì)議上的現(xiàn)場(chǎng)表述存在差異。作者因此呼吁,應(yīng)通過(guò)更開(kāi)放的科學(xué)討論來(lái)消除誤解,促進(jìn)行業(yè)共識(shí)的形成。
這個(gè)案例提醒我們:當(dāng)“稱呼”與“理解”可能存在差異時(shí),醫(yī)療器械廠商在對(duì)外宣傳時(shí)的語(yǔ)言選擇,需要比其他行業(yè)更加嚴(yán)謹(jǐn)且一致。尤其像人工心臟這樣進(jìn)入人體、關(guān)系到長(zhǎng)期臨床效果的高風(fēng)險(xiǎn)器械,術(shù)語(yǔ)的準(zhǔn)確不僅是科學(xué)問(wèn)題,更是監(jiān)管、倫理與國(guó)際溝通的問(wèn)題。
此外,隨著越來(lái)越多中國(guó)醫(yī)療器械走向國(guó)際市場(chǎng),不同區(qū)域的技術(shù)傳統(tǒng)、語(yǔ)言文化、監(jiān)管習(xí)慣都可能帶來(lái)額外的溝通挑戰(zhàn):
有些國(guó)家更看重 ISO 或 IEC 標(biāo)準(zhǔn)中的術(shù)語(yǔ)邊界
有些監(jiān)管機(jī)構(gòu)對(duì)術(shù)語(yǔ)與材料、風(fēng)險(xiǎn)評(píng)估之間的關(guān)系格外敏感
而臨床醫(yī)生則依賴這些術(shù)語(yǔ)判斷風(fēng)險(xiǎn)點(diǎn)位、失效模式與長(zhǎng)期安全性
因此,廠商在“出海”的宣傳、學(xué)術(shù)交流、注冊(cè)申報(bào)、技術(shù)文件撰寫(xiě)中,都需要提前關(guān)注:
——我們的描述方式,是否與國(guó)際業(yè)界共識(shí)的語(yǔ)境一致?
——這些術(shù)語(yǔ)在目標(biāo)市場(chǎng)是否有明確且統(tǒng)一的定義?
——設(shè)備的真實(shí)設(shè)計(jì)特征是否與所有對(duì)外表述完全對(duì)應(yīng)?
這些問(wèn)題并非某一家企業(yè)獨(dú)有,而是所有新技術(shù)走向全球時(shí)必然會(huì)遇到的共同挑戰(zhàn)。
正因如此,這類文獻(xiàn)所提出的討論,對(duì)于整個(gè)行業(yè)都具有重要價(jià)值。
因此,思宇在下文中呈現(xiàn)其中文譯文、英文原文,以便大家更全面地理解。
此文章鏈接(可復(fù)制到瀏覽器打開(kāi)或點(diǎn)擊文末閱讀全文):https://onlinelibrary.wiley.com/doi/10.1111/aor.70066
![]()
【中文譯文】
致編輯信
Expression of Concern
K.A. Dasse 路易斯維爾大學(xué)醫(yī)學(xué)院 (University of Louisville Medical School), Louisville, Kentucky, USA
通訊作者: K. A. Dasse (kurtdasse@gmail.com)
收到日期: 2025年11月3日 | 修訂日期: 2025年11月12日 | 接受日期: 2025年11月14日
尊敬的編輯:
隨著多款新型耐用型旋轉(zhuǎn)血泵進(jìn)入臨床評(píng)估,對(duì)本領(lǐng)域而言,重新明確界定血泵軸承分類的定義及其基本原理變得愈發(fā)重要。我認(rèn)為每個(gè)血泵制造商都應(yīng)當(dāng)披露其產(chǎn)品的轉(zhuǎn)子懸浮方式,包括是否在磁懸浮的基礎(chǔ)上結(jié)合了流體動(dòng)力支撐。明確這些信息至關(guān)重要,因?yàn)椤按泡S承(magnetic bearing)”和“流體動(dòng)力軸承(hydrodynamic bearing)”之間的差異可能在長(zhǎng)期應(yīng)用中對(duì)血液相容性產(chǎn)生影響。因此,當(dāng)新技術(shù)出現(xiàn)時(shí),區(qū)分不同的軸承設(shè)計(jì)、確保術(shù)語(yǔ)使用的透明和一致十分必要。
科學(xué)界和臨床界長(zhǎng)期以來(lái)的共識(shí)是:所謂“全磁懸浮(fully magnetically levitated)”血泵,是指在所有正常工作條件下,轉(zhuǎn)子的懸浮和穩(wěn)定僅僅通過(guò)磁懸浮軸承實(shí)現(xiàn)。因此,如果一款血泵在正常運(yùn)轉(zhuǎn)時(shí)采用了流體動(dòng)力軸承,而非僅將其作為磁軸承失效時(shí)的備用系統(tǒng),則不能稱之為全磁懸浮。
近年來(lái),幾款新的耐用型旋轉(zhuǎn)血泵進(jìn)入臨床,其中最引入注目的包括BrioVAD、CorHeart 6和BiVACOR。這是我們的臨床界和科學(xué)界期待已久的的進(jìn)展,因此受到歡迎。然而,隨著血泵技術(shù)日趨復(fù)雜,在介紹這些裝置的核心軸承技術(shù)時(shí),科學(xué)嚴(yán)謹(jǐn)性與透明度有時(shí)變得模糊。
例如,CorHeart 6被獨(dú)立的外部專家描述為 “一款配備了磁力輔助的雙流體動(dòng)力軸承的離心泵”,因此其軸承類型被歸類為“磁力輔助的流體動(dòng)力軸承(magnetic-assisted hydrodynamic)” [1]。然而,在我擔(dān)任主持的2025年ASAIO年會(huì)“來(lái)自工業(yè)界的新裝置進(jìn)展”專場(chǎng),核心醫(yī)療公司的代表聲稱CorHeart 6是一款“全磁懸浮心室輔助裝置”。現(xiàn)場(chǎng)一位聽(tīng)眾和我都敦促報(bào)告人開(kāi)展領(lǐng)域內(nèi)公開(kāi)的科學(xué)討論,以澄清這一表述上的不一致。
軸承命名上的不清晰,可能源自于對(duì)這些系統(tǒng)的機(jī)械和工程特性理解有限。通常,旋轉(zhuǎn)泵采用多個(gè)軸承來(lái)完全約束轉(zhuǎn)子的六個(gè)自由度,并且可以組合不同類型的軸承以穩(wěn)定單個(gè)自由度。然而,從本質(zhì)上講,旋轉(zhuǎn)血泵中使用的軸承只有三種基本類型,每一種都基于不同的工作原理:
1. 接觸式滑動(dòng)軸承(contact-type plain bearing)
2. 流體動(dòng)力軸承(hydrodynamic bearing)
3. 磁軸承(magnetic bearing)
接觸式滑動(dòng)軸承和流體動(dòng)力軸承都屬于“滑動(dòng)軸承(plain bearing)”大類,而磁軸承則構(gòu)成一個(gè)單獨(dú)的類別。
根據(jù)ISO 4378-1:2009第3.1條,滑動(dòng)軸承是指在相對(duì)運(yùn)動(dòng)的兩個(gè)表面之間發(fā)生滑動(dòng)運(yùn)動(dòng)的軸承。按潤(rùn)滑狀態(tài),滑動(dòng)軸承可進(jìn)一步分為“全膜潤(rùn)滑”和“非全膜潤(rùn)滑”兩類。在全膜潤(rùn)滑軸承中,載荷完全由連續(xù)的液膜承載,從而避免了軸承面的直接接觸。流體動(dòng)力軸承屬于全膜潤(rùn)滑軸承,其載荷由軸承面相對(duì)運(yùn)動(dòng)在液膜中產(chǎn)生的壓力來(lái)支撐。其他滑動(dòng)軸承類型(如干摩擦、邊界潤(rùn)滑和混合潤(rùn)滑軸承)則在軸承面之間存在部分或完全的物理接觸。
與此相對(duì),磁軸承依靠磁力而非液膜來(lái)承載載荷。根據(jù)ISO 14839-1:2017第3.1.6條,磁軸承被定義為 “一種通過(guò)永磁體、電磁鐵或其組合產(chǎn)生的磁力來(lái)支撐轉(zhuǎn)子的軸承,轉(zhuǎn)子和定子之間沒(méi)有任何機(jī)械接觸”。由于其本質(zhì)特性,磁軸承可以在真空中承載載荷,其支撐不依賴任何流體介質(zhì)。因此,驗(yàn)證磁軸承性能的一種直接且廣受認(rèn)可的方法,就是在空氣中(而非液體中)展示轉(zhuǎn)子的穩(wěn)定懸浮;因?yàn)榭諝獠煌谝后w,不會(huì)提供有意義的流體動(dòng)力剛度。
因此,旋轉(zhuǎn)血泵中應(yīng)用的軸承技術(shù)是上述三種基本軸承的不同組合。Olsen[2]將第三代血泵界定為采用磁力和/或流體動(dòng)力軸承的裝置,并指出兩者在運(yùn)行時(shí)都不存在運(yùn)動(dòng)部件和靜止部件之間的機(jī)械接觸。近期,Moeller等[3]將HeartMate II和HVAD歸類為第二代左心室輔助裝置,將HeartMate 3歸類為第三代裝置。他們指出,HVAD采用了電磁懸浮和流體動(dòng)力懸浮的組合,而HeartMate 3是一款全磁懸浮離心泵(盡管我認(rèn)為對(duì)前者更準(zhǔn)確的描述應(yīng)為“磁懸浮和流體動(dòng)力懸浮的結(jié)合”)。這種分類是恰當(dāng)?shù)模驗(yàn)闊o(wú)論是接觸式滑動(dòng)軸承(HeartMate II)還是流體動(dòng)力軸承(HVAD),均屬于滑動(dòng)軸承范疇,都涉及兩個(gè)表面間的滑動(dòng)運(yùn)動(dòng),無(wú)論是直接接觸還是被液膜隔開(kāi)。相反,磁軸承中沒(méi)有滑動(dòng)或滾動(dòng)表面,完全依靠磁力支撐轉(zhuǎn)子(ISO 14839-1:2017§3.1.6)。因此,全磁懸浮血泵必須僅依賴磁軸承實(shí)現(xiàn)轉(zhuǎn)子支承,其懸浮系統(tǒng)中不應(yīng)包含任何形式的滑動(dòng)軸承,無(wú)論是接觸式還是流體動(dòng)力式。
區(qū)分磁軸承與流體動(dòng)力軸承,對(duì)于理解懸浮間隙內(nèi)的血液損傷特性至關(guān)重要,因?yàn)槎叩牧黧w動(dòng)力學(xué)原理有根本差異。通常,磁軸承會(huì)維持一個(gè)大于200微米的穩(wěn)定懸浮間隙,而流體動(dòng)力軸承則需要小于100微米的間隙才能維持穩(wěn)定、防止機(jī)械接觸。除間隙寬度外,兩者懸浮間隙內(nèi)的流動(dòng)形態(tài)(二次流道)也存在顯著差異,而這也會(huì)影響血液相容性結(jié)果。
然而必須指出,盡管HeartWare HVAD的長(zhǎng)期血液相容性結(jié)果較差,但這一被廣泛接受的觀察結(jié)果并不意味著流體動(dòng)力軸承天生就不如磁軸承,尤其是考慮到未來(lái)創(chuàng)新的可能性[4]。原則上,血液相容性主要由泵內(nèi)的流場(chǎng)決定,而軸承類型僅為間接影響因素之一。事實(shí)上,近期的研究正致力于開(kāi)發(fā)新的流體動(dòng)力軸承,有望為改善其血液相容性提供新的機(jī)遇,可能代表著下一代流體動(dòng)力軸承技術(shù)。
我并沒(méi)有試圖判斷新型流體動(dòng)力軸承與磁軸承孰優(yōu)孰劣。類似的判斷需要對(duì)每款具體裝置進(jìn)行詳細(xì)的臨床前和臨床研究。然而,我深度關(guān)切的是,轉(zhuǎn)子懸浮技術(shù)的基本原理和性能特征應(yīng)當(dāng)被透明而嚴(yán)謹(jǐn)?shù)嘏丁V挥性谕暾鴾?zhǔn)確地披露這些技術(shù)的基礎(chǔ)上,研究者和臨床醫(yī)生才能進(jìn)行獨(dú)立評(píng)估,并做出合理判斷。如果提供的信息模棱兩可,研究人員就無(wú)法開(kāi)展有意義且有針對(duì)性的研究。
回顧以往,本領(lǐng)域的公司一貫會(huì)披露其血泵設(shè)計(jì)中的最薄弱的環(huán)節(jié)——即潛在血液損傷風(fēng)險(xiǎn)最高的結(jié)構(gòu)。例如,HVAD采用磁軸承實(shí)現(xiàn)徑向懸浮,而用流體動(dòng)力軸承實(shí)現(xiàn)軸向懸浮;該公司恰當(dāng)?shù)貙⒃撗b置歸類為“流體動(dòng)力裝置”,承認(rèn)流體動(dòng)力軸承可能比其磁軸承部件帶來(lái)更高的血液損傷風(fēng)險(xiǎn)。將HVAD描述為混合軸承裝置也是合理的,但我從未見(jiàn)過(guò)它被描述為全磁懸浮。
鑒于新研發(fā)的旋轉(zhuǎn)血泵在技術(shù)上越來(lái)越復(fù)雜,我認(rèn)為本領(lǐng)域必須重新審視各種懸浮技術(shù)的定義。若確有必要對(duì)這些定義進(jìn)行修訂或澄清,則應(yīng)盡快行動(dòng),建立一套與時(shí)俱進(jìn)的標(biāo)準(zhǔn)框架。隨后,應(yīng)在器械制造商、臨床醫(yī)生和研究人員之間的各類交流中,一以貫之地正確應(yīng)用這些定義,以確保科學(xué)的清晰度、透明度和患者安全。基于上述原因,我衷心希望能組建獨(dú)立工作組來(lái)規(guī)范這些定義和分類。我相信,厘清各類血泵所采用的軸承類型,符合本領(lǐng)域的共同利益。
參考文獻(xiàn):
1. K. Bourque, B. Sivaraman, C. Dague, and C. Cotter, “Chapter 5: Ventricular Assist Devices: Rotary Blood Pumps,” in Mechanical Circulatory and Respiratory Support, 2nd ed., ed. S. Gregory, A.
Stephens, S. Heinsar, J. Arens, and J. Fraser (Academic Press, 2024).
2. D. B. Olsen, “The History of Continuous-Flow Blood Pumps,” Artificial Organs 24 (2000): 401–404.
3. C. M. Moeller, A. F. Valledor, D. Oren, G. Rubinstein, G. T. Sayer, and N. Uriel, “Evolution of Mechanical Circulatory Support for Advanced Heart Failure,” Progress in Cardiovascular Diseases 82 (2024): 135–146.
4. F. D. Pagani, R. Cantor, J. Cowger, et al., “Concordance of Treatment Effect: An Analysis of the Society of Thoracic Surgeons Intermacs Database,” Annals of Thoracic Surgery 113 (2022): 1172–1182.
【英文原文】
LETTER TO THE EDITOR
Expression of Concern
K. A. Dasse
University of Louisville Medical School, Louisville, Kentucky, USA
Correspondence: K. A. Dasse (kurtdasse@gmail.com)
Received: 3 November 2025 | Revised: 12 November 2025 | Accepted: 14 November 2025
Dear Editor,
As new durable rotary blood pumps are undergoing clinical evaluation, it has become increasingly important for our field to reaffirm the definitions and underlying principles governing the classification of bearings in blood pumps. I believe each of the pump manufacturers should disclose their rotor suspension methods including any use of hydrodynamic support in combination with magnetic levitation. The differences between a “magnetic bearing” and a “hydrodynamic bearing” are critical given their potential impact on hemocompatibility through long-term use. Therefore, I believe it is important to distinguish between different bearing designs to promote the transparent and consistent use of terminology as new technologies emerge.
The scientific and clinical communities have long recognized that the definition of a fully magnetically levitated pump is one in which rotor levitation and stabilization under all normal operating conditions are achieved solely through magnetic bearings. Accordingly, a blood pump that incorporates a hydrodynamic bearing for normal operation rather than using it solely as a backup in the event of magnetic bearing failure cannot be legitimately described as fully magnetically levitated.
In recent years, several new durable rotary blood pumps, most notably BrioVAD, CorHeart 6, and BiVACOR, have entered clinical evaluation. This is an exciting development for our clinical and scientific communities, which have long awaited meaningful innovations. However, as blood pump technologies become increasingly complex, ensuring scientific accuracy and transparency when communicating the device's core bearing technology has sometimes become blurred.
For example, CorHeart 6 has been characterized by independent external experts as “a centrifugal pump with a magnetically assisted dual hydrodynamic bearing,” and thus, its bearing type was categorized as magnetic-assisted hydrodynamic [1]. Yet during the session “Updates on Upcoming Devices from Industry” at the ASAIO 2025 Annual Conference—where I served as moderator—the core medical representative stated that CorHeart 6 is a fully magnetically levitated VAD. A commenter from the audience and I urged the presenter to help resolve this discrepancy by engaging in open scientific discussions within our community.
The challenge in bearing nomenclature likely stems from a limited understanding of the mechanical and engineering properties of these systems. In general, a rotary pump incorporates multiple bearings to fully constrain the six degrees of freedom of the rotor, and different types of bearings may be combined to stabilize an individual degree of freedom. Yet, fundamentally, only three fundamental bearing types are used in rotary blood pumps—each based on a unique operating principle:
1. Contact-type plain bearing
2. Hydrodynamic bearing
3. Magnetic bearing
Both contact-type plain bearings and hydrodynamic bearings belong to the plain bearing family, whereas magnetic bearings form a separate category.
According to ISO 4378-1:2009 Clause 3.1, a plain bearing is a bearing in which sliding motion occurs between two surfaces in relative motion. Plain bearings are further classified by lubrication regime into full-film and non-full-film types. In a full-film bearing, the load is carried entirely by a continuous fluid film, eliminating direct surface contact. A hydrodynamic bearing is a type of full-film bearing in which the load is supported by pressure generated in the lubricant film due to the relative motion of the bearing surfaces. Other plain-bearing types—dry, boundary-lubricated, and mixed-lubricated bearings—operate with partial or full physical contact between sliding surfaces.
In contrast, a magnetic bearing relies on magnetic forces, not fluid films, to carry the load. Per ISO 14839-1:2017 Clause 3.1.6, a magnetic bearing is “a bearing in which the rotor is supported by magnetic forces generated by permanent magnets, electromagnets, or a combination thereof, without any mechanical contact between the rotor and stator.” By its nature, a magnetic bearing can carry load in vacuum, as it does not depend on any fluid medium for support. Therefore, a straightforward and widely accepted way to verify the performance of a magnetic bearing is to demonstrate stable rotor levitation in air rather than in liquid, since air, unlike a liquid, does not provide any meaningful hydrodynamic stiffness.
Thus, the bearing technologies used in rotary blood pumps are various combinations of these three fundamental bearings. Olsen [2] classified third-generation pumps as those incorporating magnetic and/or hydrodynamic bearings, noting that both operate without mechanical contact between moving and stationary parts. More recently, Moeller et al. [3] categorized HeartMate II and HVAD as second-generation LVADs, and HeartMate 3 as a third-generation device. They noted that HVAD uses a combination of electromagnetic and hydrodynamic levitation, while HeartMate 3 features a fully magnetically levitated centrifugal pump (although I believe the former is more accurately described as a combination of magnetic and hydrodynamic levitation). This classification is appropriate as both contact-type plain bearing (HeartMate II) and hydrodynamic bearing (HVAD) are plain bearings, involving sliding motion between two surfaces, whether in contact or separated by a fluid film. In contrast, there are no sliding or rolling surfaces in a magnetic bearing, which support the rotor entirely by magnetic forces (ISO 14839-1:2017 § 3.1.6). Consequently, a fully magnetically levitated pump must rely solely on magnetic bearings for rotor support, without incorporating any form of plain bearing—contact or hydrodynamic—within the suspension system.
The distinction between magnetic and hydrodynamic bearings is essential for understanding blood damage characteristics within the suspension gap, as the two operate on fundamentally different fluid dynamic principles. A magnetic bearing typically maintains a stable suspension gap greater than 200 μm, whereas a hydrodynamic bearing requires a much narrower gap—typically less than 100 μm—to maintain stability and prevent mechanical contact. In addition to gap length, the flow patterns within the suspension gap (secondary flow paths) differ substantially between the two, which can also influence hemocompatibility outcomes.
It is important to note, however, that although the HeartWare HVAD was reported to exhibit less favorable long-term hemocompatibility outcomes, this well-accepted observation does not imply that hydrodynamic bearings are inherently inferior to magnetic bearings, especially when considering future innovations [4]. In principle, hemocompatibility is governed primarily by the flow field inside the pump, with the bearing type serving only as an indirect contributor. Indeed, recent research efforts are advancing innovative hydrodynamic bearing designs that may offer new opportunities for improved hemocompatibility, potentially representing the next generation of hydrodynamic bearing technology.
I am not suggesting whether a new hydrodynamic bearing is inferior or superior to a magnetic bearing. Such determinations require detailed preclinical and clinical investigations of each specific device. However, I am deeply concerned about the transparency and rigor of disclosure regarding the fundamental principles and performance characteristics of rotor levitation technologies. Complete and scientifically accurate disclosure of these technologies is essential for researchers and clinicians to independently evaluate and form sound judgments. If the information provided is ambiguous, it becomes impossible for researchers to pursue meaningful and properly directed investigations.
In the past, companies in our field have consistently disclosed the weakest design aspect of their blood pumps—specifically, the component with the highest potential risk of blood damage. For example, the HVAD employs a magnetic bearing for radial suspension and a hydrodynamic bearing for axial suspension. The company appropriately classified this device as hydrodynamic, acknowledging that the hydrodynamic bearing could pose a higher risk of blood damage than its magnetic bearing component. While it would also be reasonable to describe the HVAD as a hybrid-bearing device, I have never seen it described as fully magnetically levitated.
Considering the increasing technological complexity of newly developed rotary blood pumps, I believe our community must reexamine the definitions of the various levitation technologies. If revisions or clarifications to these definitions are warranted, such actions should be undertaken promptly to establish an updated and standardized framework. These definitions should then be applied consistently and correctly across communications among device manufacturers, clinicians, and researchers to ensure scientific clarity, transparency, and patient safety. I sincerely hope for these reasons that an independent working group can be organized to standardize these definitions and classifications. In doing so, I believe clarifying the different types of bearings for each of these pumps will be in the best interest of our field.
Conflicts of Interest
The author declares no conflicts of interest.
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
內(nèi)容聲明:“思宇MedTech”跟蹤全球醫(yī)療科技進(jìn)展,旨在傳遞技術(shù)與產(chǎn)業(yè)知識(shí)。所有內(nèi)容僅供行業(yè)交流與學(xué)術(shù)探討,不構(gòu)成醫(yī)療建議或商業(yè)宣傳。文中涉及的企業(yè)、產(chǎn)品及注冊(cè)信息均來(lái)源于公開(kāi)資料或經(jīng)核實(shí)的渠道。如有錯(cuò)誤或疏漏,歡迎聯(lián)系修正。郵箱:jacky@suribot.com
版權(quán)聲明:“思宇MedTech”原創(chuàng)稿件版權(quán)歸北京思宇博特科技有限公司所有。未經(jīng)授權(quán),不得轉(zhuǎn)載、摘編或鏡像至其他網(wǎng)站、公眾號(hào)或商業(yè)平臺(tái);如需轉(zhuǎn)載,請(qǐng)聯(lián)系后臺(tái)獲得授權(quán)。對(duì)于未經(jīng)許可的全文轉(zhuǎn)載、洗稿或改寫(xiě)行為,本平臺(tái)保留依法追究的權(quán)利。
特別聲明:以上內(nèi)容(如有圖片或視頻亦包括在內(nèi))為自媒體平臺(tái)“網(wǎng)易號(hào)”用戶上傳并發(fā)布,本平臺(tái)僅提供信息存儲(chǔ)服務(wù)。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.