![]()
2025年9月3日,OpenAI宣布:以約11億美元的全股票交易方式,收購產(chǎn)品實驗平臺Statsig。伴隨此次收購,Statsig的創(chuàng)始人兼首席執(zhí)行官Vijaye Raji將加入OpenAI,擔任新設立的“應用部門首席技術官”(CTO of Applications)。
這一舉動在行業(yè)內引起了廣泛關注,其金額之高、動作之快,都表明這并非一次簡單的業(yè)務版圖擴張。雖然這不是OpenAI第一次收購,但是OpenAI為何要在這個時間點投入如此巨大的資源去收購一家主營業(yè)務為產(chǎn)品測試與實驗的公司,并且還要為應用部門吸納一名CTO?
01
要理解這一決策的根本動因,首先需要理解OpenAI當前所處的經(jīng)營環(huán)境。自ChatGPT發(fā)布以來,OpenAI的營收實現(xiàn)了驚人的增長。2025年6月,奧特曼曾對外公開宣布,OpenAI已經(jīng)實現(xiàn)了100億美元的年收入。
其核心盈利模式主要依賴于面向個人用戶的ChatGPT Plus月度會員訂閱服務,以及面向開發(fā)者的API接口調用費用。這些收入來源證明了其技術具備強大的市場吸引力,也為其持續(xù)的研發(fā)投入提供了資金支持。
然而,收入增長的背后,是更為劇烈的成本消耗。大型語言模型的訓練和推理需要龐大的計算資源,這意味著數(shù)據(jù)中心的服務器、高性能芯片以及相關的電力和維護費用是一個天文數(shù)字。2025年8月,OpenAI就被爆出年虧損超過50億美元。
![]()
同時,為了維持其在技術研究領域的領先地位,OpenAI必須持續(xù)招攬和留住全球頂尖的人工智能人才,這部分的人力成本同樣高昂。公司首席執(zhí)行官奧特曼曾多次公開表達過帶領OpenAI進行首次公開募股(IPO)的意愿。對于任何一家計劃上市的公司而言,建立一個清晰、穩(wěn)健且可持續(xù)的盈利模型,是獲得資本市場認可的硬性指標。
僅僅依靠現(xiàn)有的會員和API收費,雖然在短期內能夠維持運營,但其增長潛力和利潤空間相對有限,難以支撐起一個有望成為全球市值最高公司之一的商業(yè)故事。
因此,OpenAI迫切需要找到新的、更具規(guī)模化的盈利路徑,而這一切的基礎,就是將手中掌握的先進人工智能模型,轉化為更多、更好、更具吸引力的具體產(chǎn)品。這種將底層技術能力封裝成面向市場、解決用戶實際問題的成熟應用的過程,就是“產(chǎn)品化”。此次收購Statsig,正是OpenAI為了補強其產(chǎn)品化能力,所邁出的關鍵一步。
02
根據(jù)OpenAI發(fā)布的官方聲明,此次收購的目標是“加強工程系統(tǒng)、加快迭代速度,并將前沿的AI研究轉化為人們喜愛的直觀、安全和有用的工具”。聲明中提到的每一個詞匯,都直接指向了產(chǎn)品開發(fā)與優(yōu)化的核心環(huán)節(jié)。
為了深入理解這一點,我們需要對收購的標的——Statsig公司及其創(chuàng)始人Vijaye Raji進行更詳細的分析。Statsig并非一家普通的初創(chuàng)公司,它在業(yè)界被公認為最頂尖的實驗平臺之一。其核心價值在于提供一套完整的工具,幫助企業(yè)進行高效的產(chǎn)品開發(fā)決策。
這套工具主要包括A/B測試、功能開關(Feature Flagging)和實時決策系統(tǒng)。A/B測試允許產(chǎn)品團隊向不同用戶群體推送同一功能的細微不同版本,通過數(shù)據(jù)對比來判斷哪個版本表現(xiàn)更優(yōu),從而做出有數(shù)據(jù)支撐的優(yōu)化決策。功能開關則讓團隊可以隨時開啟或關閉某項新功能,既能進行小范圍灰度測試,也能在出現(xiàn)問題時迅速回滾,極大地降低了新功能上線的風險。實時決策系統(tǒng)則能根據(jù)用戶行為和其他數(shù)據(jù),動態(tài)調整產(chǎn)品體驗。
總而言之,Statsig提供的是一套“數(shù)據(jù)驅動產(chǎn)品開發(fā)”的科學方法論和配套的工程基礎設施。它能解決的核心問題是:如何在一個復雜的軟件產(chǎn)品中,快速、低風險地驗證新想法,并確保每一次改動都能帶來積極正面的效果。
而即將擔任OpenAI應用部門CTO的Vijaye Raji,其個人履歷更是與這一理念高度契合。在創(chuàng)立Statsig之前,他在Meta(前身為Facebook)工作了十年,領導大規(guī)模消費產(chǎn)品的工程團隊。這段經(jīng)歷讓Raji積累了豐富的、在億萬級用戶產(chǎn)品上進行快速迭代和系統(tǒng)優(yōu)化的實踐經(jīng)驗。
之后,他作為創(chuàng)始人和CEO成功打造了Statsig,這又證明了他具備將這種產(chǎn)品開發(fā)哲學轉化為成功商業(yè)產(chǎn)品的創(chuàng)業(yè)能力。因此,OpenAI得到的不僅僅是一個工具平臺,更是一位產(chǎn)品經(jīng)理。將Statsig平臺與Vijaye Raji的經(jīng)驗相結合,OpenAI的核心訴求已經(jīng)浮出水面:它需要提升自己的產(chǎn)品化能力,而且這個人必須得是靠近C端,知道消費市場真正需要什么。
03
要完全理解OpenAI做出這一決策的緊迫感,就必須將其置于當前激烈的行業(yè)競爭格局中進行考量。就在不久前,其最主要的競爭對手谷歌,通過“nano banana”項目,向整個行業(yè)展示了其強大的產(chǎn)品化執(zhí)行力。
該項目成功地將谷歌自身強大的Gemini模型,通過一套敏捷、高效的內部開發(fā)流程,在相對較短的時間內轉化為一個獲得了市場積極反饋的產(chǎn)品。根據(jù)相關團隊的播客分享和外界分析,“nano banana”的成功,關鍵在于其開發(fā)團隊對用戶需求的精準洞察、對底層模型能力的深刻理解,以及將這兩者高效結合的工程實踐能力。
團隊成員在8月底放出的播客中反復強調,團隊的出發(fā)點不是“我們有強大的模型,能用它做什么?”,而是“用戶在某個具體場景下遇到了什么麻煩,我們的模型技術如何能以最輕量、最直接的方式幫助他們?”。這種以用戶為中心的逆向思維,促使他們放棄了追求大而全的功能,而是專注于打造一個“最小可愛產(chǎn)品”(Minimum Lovable Product),并以極快的速度推向市場進行驗證。
這個案例清晰地向市場傳遞了一個信號:在當前的人工智能競爭階段,決定勝負的關鍵,已經(jīng)不僅僅在于誰的模型參數(shù)更多、在基準測試中得分更高,更在于誰能更快地將這些模型能力轉化為用戶真正需要并愿意為之付費的產(chǎn)品。
![]()
“nano banana”項目的成功,無疑給OpenAI帶來了巨大的警示。谷歌通過這次行動證明,它不僅擁有與GPT系列模型相抗衡的頂尖技術,更重要的是,它擁有一個成熟、龐大且經(jīng)驗豐富的組織體系,能夠將這些技術快速“變現(xiàn)”為用戶喜愛的產(chǎn)品。
相比之下,OpenAI雖然憑借ChatGPT的橫空出世取得了先發(fā)優(yōu)勢,但在后續(xù)的產(chǎn)品迭代和功能演進上,其節(jié)奏和策略相對更為審慎和保守。這種差異背后,反映了兩家公司在組織基因上的不同:谷歌是一家以產(chǎn)品和工程為核心驅動力的公司,而OpenAI則長期以來更像一個以研究為核心的實驗室。
在市場從最初的驚艷和好奇,逐漸轉向對實用價值和穩(wěn)定體驗的追求時,這種研究導向的基因可能會成為其持續(xù)領先的障礙。谷歌的快速跟進和產(chǎn)品化能力的展示,讓OpenAI意識到,他們真的需要這種產(chǎn)品化的能力,來補強整個團隊。
04
在這樣的背景下,收購Statsig的深層邏輯就變得異常清晰。這不僅是一次技術或人才的補充,更是一次對競爭對手戰(zhàn)略壓力的正面回應,一次旨在改變自身組織基因的“釜底抽薪”式操作。
Statsig所倡導和實踐的產(chǎn)品開發(fā)哲學——通過快速實驗、收集數(shù)據(jù)、進行驗證、迭代優(yōu)化的循環(huán)來打造優(yōu)秀產(chǎn)品——與谷歌在“nano banana”項目中展現(xiàn)出的成功方法論幾乎是完全一致的。
面對競爭對手已經(jīng)驗證過的成功路徑,OpenAI沒有選擇從零開始、在內部慢慢孵化和培養(yǎng)這種文化與能力,而是選擇了最直接、最高效的方式:直接將這一理念的最佳實踐者收購進來。這是一種典型的“用金錢換時間”的策略,在瞬息萬變的人工智能戰(zhàn)場上,時間往往是最寶貴的資源。
一個重要的細節(jié)是,在被收購之前,OpenAI本身就已經(jīng)是Statsig的客戶。
這意味著OpenAI的工程和產(chǎn)品團隊在使用Statsig平臺的過程中,已經(jīng)親身體會到了其價值所在。他們深知這套工具對于提升開發(fā)效率、降低決策風險、科學評估產(chǎn)品改動效果的重要性。正是基于這種深入的了解,OpenAI才做出了從“租用工具”到“擁有DNA”的戰(zhàn)略升級。
他們認識到,僅僅作為一個外部客戶使用平臺是遠遠不夠的,必須將這種快速實驗和數(shù)據(jù)決策的能力徹底融入到自身的血液中,成為每一個產(chǎn)品經(jīng)理和工程師的思維習慣與工作方式。通過收購,OpenAI不僅獲得了平臺的所有權,更重要的是,獲得了打造和維護這套平臺的整個團隊。
![]()
此次收購也標志著整個人工智能行業(yè)競爭焦點的一次重要轉變。在過去幾年里,行業(yè)的競爭主要圍繞著模型的“硬實力”展開,各大公司和研究機構競相追逐更大的模型規(guī)模、更高的參數(shù)量和在各種學術評測榜單上的排名。這可以被稱之為“模型參數(shù)競賽”階段。
然而,隨著頭部模型的性能逐漸趨于收斂,單純依靠模型能力的提升所能帶來的邊際效益正在遞減。用戶和市場開始更多地關注產(chǎn)品的實際體驗:應用是否穩(wěn)定可靠?功能是否貼合實際需求?交互是否流暢自然?能否解決特定場景下的具體問題?這些問題的答案,都取決于產(chǎn)品化的能力。
因此,行業(yè)的競爭正在進入下半場,即“產(chǎn)品體驗競賽”階段。在這個新階段,誰能夠建立起更敏捷的開發(fā)流程,更頻繁地進行有效的實驗,更快速地收集和響應用戶反饋,更精細地打磨產(chǎn)品細節(jié),誰就更有可能在激烈的市場競爭中脫穎而出,贏得用戶的青睞和忠誠度。
對于OpenAI自身而言,這次收購的意義是極其重大的。OpenAI的管理層已經(jīng)深刻認識到了自身的短板所在,并愿意為此付出巨大的代價去彌補。可以預見,在整合Statsig之后,OpenAI的核心產(chǎn)品如ChatGPT的更新頻率和功能優(yōu)化速度將有望得到大幅提升。
過去,像Statsig這樣的實驗平臺可能更多地被視為傳統(tǒng)互聯(lián)網(wǎng)公司的“標配”,但在人工智能時代,當產(chǎn)品本身(即模型)具有不確定性和復雜性時,科學的實驗和驗證體系變得更加不可或缺。OpenAI的這次收購,可能會引發(fā)其他人工智能巨頭對自身產(chǎn)品化流程的重新審視,并加大在類似工具、平臺或團隊上的投入。未來,圍繞AI應用開發(fā)效率和質量的基礎設施,可能會成為一個新的投資和競爭熱點。
![]()
歡迎在評論區(qū)留言~
如需開白請加小編微信:dongfangmark
![]()
特別聲明:以上內容(如有圖片或視頻亦包括在內)為自媒體平臺“網(wǎng)易號”用戶上傳并發(fā)布,本平臺僅提供信息存儲服務。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.